Exploring fungal diversity and interactions with *L. acicola* in Brown Spot Needle Blight

Emmanuel D. Nyarko, Annakay Newell, Rabiu Olatinwo and Lori G. Eckhardt

Forest Health Dynamics Laboratory
College of Forestry, Wildlife and Environment
Auburn University, Auburn AL

Background

- -Loblolly pine (*Pinus taeda*) is the most abundant pine found in Alabama
- -Widely planted for commercial use
- -Thrives in various soil types and climatic conditions, making it ideal for reforestation and afforestation

Problem

Brown spot needle blight poses a significant threat to the productivity and economic viability of loblolly pine plantations

Seedlings in nurseries and young plantations are also vulnerable

BSNB is caused by the fungus, *Lecanosticta acicola*

BSNB infected study plot in Chatom, AL

Life cycle of *L. acicola*

Impact of Brown Spot Needle Blight

Datta, D. & Eckhardt L.G. 2021

- Reduced growth
- Premature shedding of needles
- Tree mortality

Contact: Rabiu Olatinwo (rabiu.o.olatinwo@usda.gov)

Objectives

Study 1

To investigate the diversity of fungi associated with *Lecanosticta acicola* in brown spot needle blight

Study 2

To assess the seedling susceptibility of different loblolly pine families to *Lecanosticta acicola*

Study Areas

Research plots located in Cullman and Chatom, Alabama

14 plots in 2023

3 National Forests (8 new plots)- January 2024 Bankhead NF, Conecuh NF, Tuskegee NF

Plot layout

Area: ≈ 2.2 acres

FIA Plot design for the Forest Health Monitoring Program, 1990

Needle collection

Sampling period – monthly (March to November)

Needle samples collected from one tree per subplot in all plots

Transported to the Forest Health Lab for processing

Processing and Identification

Sample processing (Plating)

Results

Predominant fungi recovered from plated needles

Lecanosticta acicola

FHDL

Hendersonia

FHDL

Barnett, H. L, & Hunter B.B., 1998

Results

Predominant fungi recovered from plated needles

Cladosporium

Barnett, H. L, & Hunter B.B., 1998

Alternaria

Pestalotiopsis

FHDL

Barnett, H. L, & Hunter B.B., 1998 **FHDL**

Ecological roles of predominant fungi

Fungi	Ecological role
L. acicola	Parasitic
Pestalotiopsis	Endophytic, saprophytic
Cladosporium	Weakly parasitic, saprophytic
Alternaria	Parasitic, Saprophytic
Trichoderma	Saprophytic
Bispora	Saprophytic

Barnett, H. L, & Hunter B.B., 1998. Illustrated Genera of Imperfect Fungi 4th Edition

On-going work

- DNA extraction for samples collected in 2023
- Needle sample collection on newly added National Forests
- Seedling susceptibility experiment (Study 2)

Acknowledgment

Dr. Lori Eckhardt (Advisor)

Committee Members

FHDL Members (Graduate and undergraduate students)

Kris Bradley

Dr. Glenn Glover & Family (Osko Forest)

The Williams Family

Stallworth Land Company

Longleaf Land & Timber Company

THANK YOU